Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.389
Filtrar
1.
HardwareX ; 18: e00518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558824

RESUMO

Interactions between coastal waters and marine-terminating glaciers in the Polar Regions play a significant role in global sea level rise fueled by a rapidly warming Arctic. The risk of glacier calving, and the abundance of ice, can make it impossible for surface vessels to access the waters near glacier termini. Alternative methods using manned aircraft are expensive. As a result, oceanographic measurements are limited near glacier termini. We present an uncrewed aerial vehicle (UAV) with an on-board winch system that allows oceanographic profiling in remote, hazardous areas using a commercial conductivity, temperature, and depth (CTD) sensor payload. The UAV is optimized for easy handling and deployment and is capable of high-speed and efficient cruise flight. An autopilot system provides pilot assistance and autonomous flight capabilities. The total weight of the UAV including payload is 6.5 kg with an endurance of 24 min. Testing of the system was conducted in South Greenland during winter conditions in March 2023 with successful profiles collected near a glacier terminus (<5 m) and in small openings in ice mélange (2.2 m). The system proved capable, reliable, and efficient. Further development of the system will allow other sensors for an even more flexible measurement suite.

2.
Heliyon ; 10(7): e27820, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560215

RESUMO

Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.

4.
Mar Pollut Bull ; 202: 116309, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564818

RESUMO

International sailing regattas are major sporting events often held within coastal marine environments which overlap with the habitats of marine species. Although races are confined to courses, the popularity of these events can attract large spectator flotillas, sometimes composed of hundreds of motorized vessels. Underwater noise from these flotillas can potentially alter soundscapes experienced by marine species. To understand how these flotillas may alter soundscapes, acoustic recordings were taken around racecourses during the 36th America's Cup in the Hauraki Gulf, New Zealand in 2021. Sustained increases in broadband underwater sound levels during the regatta (up to 17 dB re 1 µPa rms; 0.01-24 kHz) that extended beyond racecourse boundaries (>8.5 km) and racing hours were observed; very likely attributable to the increase in regatta-related vessel activity. Underwater noise pollution from spectator flotillas attending larger regattas should be considered during event planning stages, particularly when events occur in ecologically significance areas.

5.
Oecologia ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568471

RESUMO

Ecological theory predicts niche partitioning between high-level predators living in sympatry as a mechanism to minimise the selective pressure of competition. Accordingly, male Australian fur seals Arctocephalus pusillus doriferus and New Zealand fur seals A. forsteri that live in sympatry should exhibit partitioning in their broad niches (in habitat and trophic dimensions) in order to coexist. However, at the northern end of their distributions in Australia, both are recolonising their historic range after a long absence due to over-exploitation, and their small population sizes suggest competition should be weak and may allow overlap in niche space. We found some niche overlap, yet clear partitioning in diet trophic level (δ15N values from vibrissae), spatial niche space (horizontal and vertical telemetry data) and circadian activity patterns (timing of dives) between males of each species, suggesting competition may remain an active driver of niche partitioning amongst individuals even in small, peripheral populations. Consistent with individual specialisation theory, broad niches of populations were associated with high levels of individual specialisation for both species, despite putative low competition. Specialists in isotopic space were not necessarily specialists in spatial niche space, further emphasising their diverse individual strategies for niche partitioning. Males of each species displayed distinct foraging modes, with Australian fur seals primarily benthic and New Zealand fur seals primarily epipelagic, though unexpectedly high individual specialisation for New Zealand fur seals might suggest marginal populations provide exceptions to the pattern generally observed amongst other fur seals.

6.
Sci Rep ; 14(1): 7785, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565615

RESUMO

The golden coral Savalia savaglia is a long-living ecosystem engineer of Mediterranean circalittoral assemblages, able to induce necrosis of gorgonians' and black corals' coenenchyme and grow on their cleaned organic skeleton. Despite its rarity, in Boka Kotorska Bay (Montenegro) a shallow population of more than 1000 colonies was recorded close to underwater freshwater springs, which create very peculiar environmental conditions. In this context, the species was extremely abundant at two sites, while gorgonians were rare. The abundance and size of S. savaglia colonies and the diversity of the entire benthic assemblage were investigated by photographic sampling in a depth range of 0-35 m. Several living fragments of S. savaglia spread on the sea floor and small settled colonies (< 5 cm high) suggested a high incidence of asexual reproduction and a non-parasitic behaviour of this population. This was confirmed by studying thin sections of the basal portion of the trunk where the central core, generally represented by the remains of the gorgonian host skeleton, was lacking. The S. savaglia population of Boka Kotorska Bay forms the unique Mediterranean assemblage of the species deserving the definition of animal forest. Recently, temporary mitigation measures for anthropogenic impact were issued by the Government of Montenegro. Nevertheless, due to the importance of the sites the establishment of a permanent Marine Protected Area is strongly recommended.


Assuntos
Antozoários , Ecossistema , Animais , Montenegro , Baías , Mar Mediterrâneo
7.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572638

RESUMO

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Assuntos
Octopodiformes , Animais , Temperatura , Mudança Climática , Aquecimento Global , Oceanos e Mares
8.
Glob Chang Biol ; 30(4): e17257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572701

RESUMO

Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.


Los países están ampliando las redes de áreas marinas protegidas (AMP) para mitigar la disminución de las pesquerías y apoyar la biodiversidad marina. Sin embargo, las evaluaciones de impacto de las AMP típicamente estudian la biomasa total de peces. Aquí, examinamos cómo la biomasa de peces desagregada por etapas de vida adultas y juveniles responde a factores ambientales como anomalías de la temperatura superficial del mar (SST) e impacto humano, y múltiples tipos de manejo en 139 sitios de arrecifes en el sistema arrecifal mesoamericano (SAM). Encontramos que la biomasa total de peces en general parece estable en toda la región entre 2006 y 2018, con una recuperación limitada de las poblaciones de peces en las AMP. Sin embargo, la métrica de biomasa total de peces enmascaró los cambios en la estructura de la comunidad de peces, con una biomasa de peces adultos más baja que juveniles en los sitios del norte, y proporciones adulto:juvenil más cercana a 1:1 en los sitios del sur. Estos cambios fueron asociados con diferentes respuestas de peces juveniles y adultos a variables ambientales y de manejo. La biomasa de peces juveniles aumentó en sitios con alta conectividad larvaria y cobertura coralina, mientras que la biomasa de peces adultos disminuyó en sitios con mayor impacto humano y anomalías en la SST. La biomasa de peces adultos disminuyó principalmente en las zonas de uso general (GUZ) hondureñas, lo cual sugiere una protección insuficiente para peces adultos en el sur del SAM. Hubo un gradiente norte­sur en el manejo y los factores ambientales, con menor cobertura de áreas totalmente protegidas y mayores anomalías de SST y desarrollo costero en el sur. En conjunto esto puede degradar el mantenimiento de la biomasa de peces adultos en el sur del SAM. La interacción entre factores ambientales y el manejo en el diseño de las AMP es fundamental para aumentar la biomasa de peces en todas las etapas del ciclo de vida.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Conservação dos Recursos Naturais , Biomassa , Peixes/fisiologia , Pesqueiros
9.
Mar Pollut Bull ; 202: 116321, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574501

RESUMO

Currently, sea turtle habitats are being altered by climate change and human activities, with habitat loss posing an urgent threat to Indian sea turtles. Thus, the objective of this study is to analyze the dynamic shoreline alterations and their impacts on Olive Ridley Sea Turtle (ORT) nesting sites in Gahirmatha Marine Wildlife Sanctuary from 1990 to 2022. Landsat satellite images served as input datasets to assess dynamic shoreline changes. This study assessed shoreline alterations and their rates across 929 transects divided into four zones using the Digital Shoreline Analysis System (DSAS) software. The results revealed a significant 14-km northward shift in the nesting site due to substantial coastal erosion, threatening the turtles' Arribada. This study underscores the need for conservation efforts to preserve nesting environments amidst changing coastal landscapes, offering novel insights into the interaction between coastal processes and marine turtle nesting behaviors.

10.
Microbiol Spectr ; : e0367423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578091

RESUMO

Vibrio is a genus of halophilic, gram-negative bacteria found in estuaries around the globe. Integral parts of coastal cultures often involve contact with vectors of pathogenic Vibrio spp. (e.g., consuming raw shellfish). High rates of mortality from certain Vibrio spp. infections demonstrate the need for an improved understanding of Vibrio spp. dynamics in estuarine regions. Our study assessed meteorological, hydrographic, and biological correlates of Vibrio parahaemolyticus and V. vulnificus at 10 sites in the Eastern Mississippi Sound System (EMSS) from April to October 2019. During the sampling period, median abundances of V. parahaemolyticus and V. vulnificus were 2.31 log MPN/L and 2.90 log MPN/L, respectively. Vibrio spp. dynamics were largely driven by site-based variation, with sites closest to freshwater inputs having the highest abundances. The E-W wind scalar, which affects Ekman transport, was a novel Vibrio spp. correlate observed. A potential salinity effect on bacterial-particle associations was identified, where V. vulnificus was associated with larger particles in conditions outside of their optimal salinity. Additionally, V. vulnificus abundances were correlated to those of harmful algal species that did not dominate community chlorophyll. Correlates from this study may be used to inform the next iteration of regionally predictive Vibrio models and may lend additional insight to Vibrio spp. ecology in similar systems. IMPORTANCE: Vibrio spp. are bacteria found in estuaries worldwide; some species can cause illness and infections in humans. Relationships between Vibrio spp. abundance, salinity, and temperature are well documented, but correlations to other environmental parameters are less understood. This study identifies unique correlates (e.g., E-W wind scalar and harmful algal species) that could potentially inform the next iteration of predictive Vibrio models for the EMSS region. Additionally, these correlates may allow existing environmental monitoring efforts to be leveraged in providing data inputs for future Vibrio risk models. An observed correlation between salinity and V. vulnificus/particle-size associations suggests that predicted environmental changes may affect the abundance of Vibrio spp. in certain reservoirs, which may alter which vectors present the greatest vibrio risk.

11.
Heliyon ; 10(7): e28233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596052

RESUMO

UNESCO's Intergovernmental Oceanographic Commission launched the United Nations Decade of Ocean Science for Sustainable Development in 2021 to boost global and sustainable Ocean governance. The initiative resulted from historical and political dynamics at the global and lower political scales, with maritime environmental and economic concerns becoming more prominent in 2010. The Ocean Decade's pillars include science and research, sustainability, conservation, and bridging gaps for a global Ocean-Climate-Biodiversity nexus. The Sustainable Development Goals recognized the importance of oceans and marine resources, and the Ocean was officially perceived as a determining factor of Climate Change at CoP 21 in 2015. Portugal has built integrated and far-reaching policies for ocean governance, including significant involvement with an international perspective since the Lisbon World Exhibition in 1998. In addition, the national government established a Ministry of the Sea in 2015 to re-develop relations with its maritime space. This article analyzes and compares the discourse of the United Nations' Sustainable Development Goals reports and the Portuguese government programs (2005-2022) to explore the prominent trends in Portuguese Ocean governance discourse and how global and national perspectives interact. Through this case study, the research aims to develop insights into the multiscalar impacts of promoting global and sustainable Ocean governance and its interaction with national perspectives.

12.
Front Microbiol ; 15: 1369102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596378

RESUMO

Climate change related warming is a serious environmental problem attributed to anthropogenic activities, causing ocean water temperatures to rise in the coastal marine ecosystem since the last century. This particularly affects benthic microbial communities, which are crucial for biogeochemical cycles. While bacterial communities have received considerable scientific attention, the benthic eukaryotic community response to climate change remains relatively overlooked. In this study, sediments were sampled from a heated (average 5°C increase over the whole year for over 50 years) and a control (contemporary conditions) Baltic Sea bay during four different seasons across a year. RNA transcript counts were then used to investigate eukaryotic community changes under long-term warming. The composition of active species in the heated and control bay sediment eukaryotic communities differed, which was mainly attributed to salinity and temperature. The family level RNA transcript alpha diversity in the heated bay was higher during May but lower in November, compared with the control bay, suggesting altered seasonal activity patterns and dynamics. In addition, structures of the active eukaryotic communities varied between the two bays during the same season. Hence, this study revealed that long-term warming can change seasonality in eukaryotic diversity patterns. Relative abundances and transcript expression comparisons between bays suggested that some taxa that now have lower mRNA transcripts numbers could be favored by future warming. Furthermore, long-term warming can lead to a more active metabolism in these communities throughout the year, such as higher transcript numbers associated with diatom energy production and protein synthesis in the heated bay during winter. In all, these data can help predict how future global warming will affect the ecology and metabolism of eukaryotic community in coastal sediments.

13.
Mar Pollut Bull ; 202: 116353, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598929

RESUMO

Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 µg/g lw and 1.04-4.94 µg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.

14.
Mar Pollut Bull ; 202: 116340, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598930

RESUMO

Unmanaged plastic debris from both terrestrial and aquatic sources is causing havoc on Indian coastlines. Tajpur Beach and Haliday Island were selected as two distinct coastal ecosystems in West Bengal for inventorying sighted macro-plastics, aiming to assess their distribution and compare pollution levels. This study employs a comprehensive methodological approach, integrating field-based observations along with lab-based measurements, and information derived from geospatial analysis. Total 34 random points across two study sites were considered for the physical, chemical, and biological characterization of macro-plastics to assess their relative abundance. Areas with higher human footfalls exhibited greater accumulation of plastic debris, with polypropylene, either alone or in combination with polyurethane and polystyrene, identified as highly toxic. Fragmented plastic debris was prevalent at both test sites, yet undisturbed Haliday Island exhibited an abundance of less fragmented materials. Emphasis was also given on implementing appropriate management regimes to achieve plastic-free diverse coastal landscapes.

15.
FEMS Microbiol Ecol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599628

RESUMO

Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterised the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilisation is present but not universal in marine yeasts, consistent with existing knowledge of non-marine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.

16.
Intern Med ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599876

RESUMO

The salivary glands of marine carnivorous gastropods contain tetramines, which usually cause mild symptoms of poisoning. However, these symptoms may be fatal in rare cases. A 58-year-old woman with a history of myasthenia gravis complained of dyspnea after consuming marine carnivorous gastropods with intact salivary glands. Upon arrival at the hospital, her blood gas analysis revealed type II respiratory failure with a pCO2 of 154 mmHg. Tracheal intubation was immediately performed. Her respiratory condition improved the following day, and she therefore could be weaned off the ventilator. Tetramine poisoning can be fatal for patients with certain underlying medical conditions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38602639

RESUMO

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.

18.
ACS Appl Bio Mater ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593040

RESUMO

In line with global goals to solve marine biofouling challenges, this study proposes an approach to developing a green synthesis inspired by natural resources for fouling-resistant behavior. A hybrid antifouling/foul release (HAF) coating based on poly(dimethylsiloxane) containing a green synthesized nanocomposite was developed as an environmentally friendly strategy. The nanocomposites based on graphene oxide (GO) and using marine sources, leaves, and stems of mangroves (Avicennia marina), brown algae (Polycladia myrica), and zinc oxide were compared. The effectiveness of this strategy was checked first in the laboratory and then in natural seawater. The performance stability of the coatings after immersion in natural seawater was also evaluated. With the lowest antifouling (17.95 ± 0.7%) and the highest defouling (51.2 ± 0.9%), the best fouling-resistant performance was for the coatings containing graphene oxide reduced with A. marina stem/zinc oxide (PrGZS) and graphene oxide reduced with A. marina leaves/zinc oxide with 50% multiwall carbon nanotubes (PrGZHC50), respectively. Therefore, the HAF coatings can be considered as developed and eco-friendly HAF coatings for the maritime industry.

19.
Mar Pollut Bull ; 202: 116313, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593713

RESUMO

This study assessed the presence of marine litter along the beach of the city of Punta Arenas, Chile. The sampling period coincided with the COVID-19 pandemic. A total of 239 plastic waste items were identified out of a total of 638 litter items. The Clean Coast Index reported within this study ranged from Clean (CCI 2-5) to Extremely dirty (CCI >20), especially near the port. The majority of litter items has been classified as originating from varied origins, as it is not possible to pinpoint a precise origin in most items. The results indicate that the predominant plastic litter in Punta Arenas is PVC. The results are discussed in relation to the sources and composition of the residues, the morpho dynamics of the coast, and the CCI is compared with other locations around the globe.

20.
World J Microbiol Biotechnol ; 40(5): 155, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581587

RESUMO

The study aims to enhance ethanol production by Wickerhamomyces subpelliculosus ZE75 isolated from marine sediment. In addition, analyzing the kinetic parameters of ethanol production and optimization of the fermentation conditions was performed. The marine yeast isolate ZE75 was selected as the front runner ethanol-producer, with an ethanol yield of 89.77 gL-1. ZE75 was identified relying on the phenotypic and genotypic characteristics of W. subpelliculosus. The genotypic characterization based on the Internal Transcribed Spacer (ITS) sequence was deposited in the GenBank database with the accession number OP715873. The maximum specific ethanol production rate (vmax) was 0.482 gg-1 h-1 at 175 gL-1 glucose concentration, with a high accuracy of R2 0.95. The maximum growth specific rates (µmax) were 0.141 h-1 obtained at 150 gL-1 glucose concentration with R2 0.91. Optimization of the fermentation parameters such as pH and salinity has been achieved. The highest ethanol yield 0.5637 gg-1 was achieved in a 100% natural seawater-based medium. The maximum ethanol production of 104.04 gL-1 was achieved at pH 4.5 with a specific ethanol rate of 0.1669 gg-1 h-1. The findings of the present study recommend the possibility of ethanol production from a seawater-based medium on a large scale using W. subpelliculosus ZE75.


Assuntos
Etanol , Saccharomycetales , Leveduras , Fermentação , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...